14=1/2(3x^2)

Simple and best practice solution for 14=1/2(3x^2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 14=1/2(3x^2) equation:



14=1/2(3x^2)
We move all terms to the left:
14-(1/2(3x^2))=0
Domain of the equation: 23x^2)!=0
x!=0/1
x!=0
x∈R
We get rid of parentheses
-1/23x^2+14=0
We multiply all the terms by the denominator
14*23x^2-1=0
Wy multiply elements
322x^2-1=0
a = 322; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·322·(-1)
Δ = 1288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1288}=\sqrt{4*322}=\sqrt{4}*\sqrt{322}=2\sqrt{322}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{322}}{2*322}=\frac{0-2\sqrt{322}}{644} =-\frac{2\sqrt{322}}{644} =-\frac{\sqrt{322}}{322} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{322}}{2*322}=\frac{0+2\sqrt{322}}{644} =\frac{2\sqrt{322}}{644} =\frac{\sqrt{322}}{322} $

See similar equations:

| -8(x=4)=-24 | | 3x+1/2-1=46 | | 3x2+6=21 | | F(5)=12(2)^x | | F(x)=12(2)^x | | z=-0.7z=0.7 | | 6x+4=18+2x | | 3y^2−9y+4=0 | | 2x^2+1=25.5 | | 2x+-2=1/2x+2 | | -2+2x=1/2x+2 | | 6x-16=64+4x | | E(x)=10x-30 | | 4(-3x-5)+8=3(-5x-6) | | 7x-6=4x+39 | | 16-5x=-7x+10 | | 7/4w+12+1=-3/w+3 | | 17+2c=5 | | 0=2x*2x+7x+6 | | x*x+10x=16 | | 1/5x+6=14 | | x+8/3=11 | | -5x^2-32x-64=0 | | 4(2y+2)+8=3(3y-1)-2 | | 3x+9=-17x+8 | | 3(4x+20)=36 | | 7x-3x=300 | | 3n-10=16+n | | 7x-5+2x-4=90 | | -9x^2-24x+24=0 | | 4(x-7)=0.3(x+0.2)+2.11 | | A(n)=-3(n-1)(6) |

Equations solver categories